ISSN 0108-2701

The dimeric mixed-ligand titanacarborane sandwich [1-(Cp)-1-Ti-2-(Me)-3-(SiMe₃)-2,3-C₂B₄H₄]₂

Narayan S. Hosmane and Chong Zheng*

Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA Correspondence e-mail: zheng@cz2.chem.niu.edu

Received 10 August 1999 Accepted 18 January 2000

The title dimer, bis[1-cyclopentadienyl-2-methyl-1-titana-3trimethylsilyl-2,3-dicarba-*closo*-hexaborane(6)], [Ti(C₅H₅)-(C₆H₁₆B₄Si)]₂, reveals that the centrosymmetric molecule consists of two bent-sandwich titanacarboranes bridged by the B–H–Ti bonds. The average bond distances are Ti–B 2.445 (3), Ti–C(cage) 2.334 (2) and Ti–C(Cp) 2.376 (3) Å, and the corresponding bond angles are Cp–Ti–Cp 163.2 (1) and Cp–Ti–Cb (Cb = C₂B₃ face) 139.9 (1)°; the Ti–H separations are 2.10 (2) and 2.19 (2) Å.

Comment

Group four (titanium group) organometallic compounds have been the subject of numerous structural, spectroscopic and synthetic investigations (Abel et al., 1995; Cardin et al., 1986; Jordan, 1988; Jordan et al., 1990; Corbin et al., 1986). Interest in the design of novel molecular magnetic materials (Miller & Epstein, 1994) has made the study of electron spin-electron spin interactions in dinuclear and polynuclear transition metal complexes a topic of intense research (VanVleck, 1932; Kahn, 1993; Mabbs & Collison, 1992). However, only a relatively small number of symmetrical Ti^{III} dimers have been completely characterized by electron paramagnetic resonance (Mabbs & Collison, 1992), magnetic susceptibility measurements and crystal structure determinations (Samuel et al., 1992; Xin et al., 1994; Grimes, 1995; Hosmane & Maguire, 1990, 1991, 1993). Although our recent paper on this subject described the synthesis and reactivity studies on the dimeric mixed-ligand titanacarborane sandwich [1-(Cp)-1-Ti-2-(Me)- $3-(SiMe_3)-2, 3-C_2B_4H_4)_{2}$, (II) (Cp = $\eta^5-C_5H_5$), we were unable to grow a suitable single crystal of this complex and hence its structure was not reported (Hosmane et al., 1997). After allowing a benzene solution of (II) to stand for several months at room temperature in vacuo, suitable crystals were obtained and were subsequently used for X-ray analysis.

The driving force for the formation of (II) is most likely the stability of the Ti^{III} product, as well as the formation of dihydrofulvalene. When the 'C atoms adjacent' bis(trimethylsilyl)carborane (Cb) was reacted with TiCl₃, only the monomeric full-sandwich chlorotitanacarborane was formed, irrespective of the stoichiometry used in the reaction. Replacement of an SiMe₃ group with the smaller Me group afforded the $[(Cb^*)_2Ti]_2^{2-}$ dimer exclusively (Hosmane *et al.*, 1997). In the same way, replacement of one of the Cb ligands with the smaller, isolobal and isoelectronic π -donor Cp ligand also resulted in dimer formation, giving the mixed-ligand dimer (II).

The crystal structure (Fig. 1) reveals that (II) is a bentsandwich complex, similar to those found in the Cp system (Corbin et al., 1986; Samuel et al., 1992; Jungst et al., 1977; Peterson & Dahl, 1975; Pattiasina et al., 1987). The (ring centroid)-Ti-(ring centroid) bond angle of 139.9 (1)° is within the range 130-144° found in the titanocenes (Corbin et al., 1986; Samuel et al., 1992; Jungst et al., 1977; Peterson & Dahl, 1975; Pattiasina et al., 1987), and similar to the analogous angles of 144.6 and 138.8° found by Jordan for the mixedligand complexes $[(Cp^*)Ti(NCMe_2)(C_2B_9H_{11})]$ and $[(Cp^*) Ti(NCMe_2)(MeCN)(C_2B_9H_{11})]$, respectively (Kreuder *et al.*, 1995). A comparison of the distances between Ti and the centroids of the Cp and C₂B₃ carborane rings reveals a surprising insensitivity to either the formal charge on the metals or the nature of the other ligands present. The average Ti-Cp distance of 2.060 (3) Å is close to the average of 2.054 (4) Å found in [Cp₂TiCl]₂ (Jungst et al., 1977) and is also close to the analogous distances found in a number of substituted titanocenes (Corbin et al., 1986; Peterson & Dahl, 1975; Pattiasina et al., 1987). The average Ti-C₂B₃(centroid) distance of 1.983 (3) Å is close to the values of 2.02 and 1.91 Å found in the $Cp*Ti(C_2B_9H_{11})$ mixed-ligand sandwich compounds of Jordan (Kreuder et al., 1995), as well as the Ti- C_2B_3 (centroid) distance of 1.917 Å reported by Grimes for the cyclooctatetraene (COT) titanacarborane $1-(\eta^8-C_8H_8)-1-Ti$ - $2,3-(Et)_2-2,3-C_2B_4H_4$ (Swisher *et al.*, 1984). The latter compound is of interest in that it, as well as its cyclopentadienide analogues (Koon & Helmholdt, 1984), is not bent but has a linear ring centroid-Ti-ring centroid arrangement. It is not clear whether the linear structures found in the COT complexes are a result of the size of the $[C_8H_8]^{2-}$ ligand or the fact that it is a ten-electron donor. In the same way, while both steric and electronic effects are operative in determining the geometry of (II), the relative importance of the two effects is not apparent. However, the influence of steric factors is readily seen in some of the structural features of known titanacarborane bent-sandwich complexes (Hosmane et al., 1997). Nonetheless, substitution of an SiMe₃ group by a sterically less demanding Me allows additional coordination to form the dimeric structure as found for (II). This is similar to what is found in the titanocenes where the substitution of a Cp ligand in $[Cp_2TiCl]_2$ by Cp^* ($Cp^* = \eta^5 - C_5Me_5$) resulted in the isolation of the [(Cp*)₂TiCl] monomer (Jungst et al., 1977; Peterson & Dahl, 1975; Pattiasina et al., 1987). Other properties may also be affected. For example, steric crowding by the SiMe₃ groups has been used to account for the lack of reactivity of the coordinated Cl and tetrahydrofuran (thf) in the zirconacarborane anion, [1-Cl-1-thf-2,2',3,3'-(SiMe₃)₄-1,1'-commo- $Zr(2,3-C_2B_4H_4)_2$ (Thomas *et al.*, 1995). It may well be that the use of different cage-carbon substituents and the locations of the cage-C atoms in the bonding face could be used to control the reactivities of these d^0 or d^1 bent-sandwich metallacarboranes.

Figure 1

Displacement ellipsoid drawing of the title compound with ellipsoids shown at the 50% probability level [symmetry code: (i) 1 - x, -y, -z].

Experimental

The reaction of Cp₂TiCl₂ with the unsolvated 'C atoms adjacent' dilithium compounds, closo-exo-Li-1-Li-2-(Me)-3-(SiMe₃)-2,3-C₂B₄H₄ (Hosmane et al., 1993), produced the corresponding mixed-ligand sandwich titanacarborane, [commo-1-Cp-1-Ti^{III}-2-(Me)-3-(SiMe₃)-2,3-C₂B₄H₄]₂, (II), in 54% yield as shown in the scheme above (Hosmane et al., 1997).

Crystal data

$[Ti(C_5H_5)(C_6H_{16}B_4Si)]_2$	$D_x = 1.239 \text{ Mg m}^{-3}$
$M_r = 545.02$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
$a = 8.2310 (16) \text{\AA}$	reflections
b = 10.655 (2) Å	$\theta = 3-25^{\circ}$
c = 17.042 (3) Å	$\mu = 0.640 \text{ mm}^{-1}$
$\beta = 102.26 \ (3)^{\circ}$	T = 293 (2) K
$V = 1460.5 (5) \text{ Å}^3$	Rectangular, black
Z = 2	$0.32 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	$R_{\rm int} = 0.018$
ometer	$\theta_{\rm max} = 26.96^{\circ}$
ω –2 θ scans	$h = -10 \rightarrow 10$
Absorption correction: ψ scan	$k = 0 \rightarrow 13$
(North et al., 1968)	$l = 0 \rightarrow 21$
$T_{\min} = 0.862, \ T_{\max} = 0.938$	3 standard reflections
3263 measured reflections	every 250 reflections
3164 independent reflections	intensity decay: none
2365 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2 (F_o^2)]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.25841
$wR(F^2) = 0.089$	where $P =$
S = 1.026	$(\Delta/\sigma)_{\rm max} < 0.$
3164 reflections	$\Delta \rho_{\rm max} = 0.31$
170 parameters	$\Delta \rho_{\min} = -0.2$
H atoms treated by a mixture of	
independent and constrained	
refinement	

 $+ (0.0455P)^{2}$

 $+ 2F_{a}^{2})/3$

Table 1

Selected geometric parameters (Å, °).

Ti-C1	2.330 (2)	Ti-C12	2.384 (2)
Ti-C2	2.339 (2)	Ti-B3	2.406 (3)
Ti-C15	2.371 (2)	Ti-B5	2.414 (2)
Ti-C13	2.371 (2)	Ti-B5 ⁱ	2.415 (2)
Ti-C11	2.375 (2)	Ti-B4	2.484 (2)
Ti-C14	2.378 (2)	Ti-B4 ⁱ	2.505 (3)
C1-Ti-C2	37.26 (7)	C2-Ti-C14	116.45 (9)
C1-Ti-C15	113.91 (9)	C15-Ti-C14	34.29 (10)
C2-Ti-C15	83.89 (10)	C13-Ti-C14	33.80 (9)
C1-Ti-C13	142.58 (8)	C11-Ti-C14	56.58 (10)
C2-Ti-C13	136.68 (8)	C1-Ti-C12	108.54 (8)
C15-Ti-C13	56.68 (11)	C2-Ti-C12	110.61 (9)
C1-Ti-C11	94.64 (8)	C15-Ti-C12	56.47 (11)
C2-Ti-C11	80.92 (9)	C13-Ti-C12	34.28 (9)
C15-Ti-C11	34.10 (11)	C11-Ti-C12	33.79 (10)
C13-Ti-C11	56.62 (9)	C14-Ti-C12	56.41 (10)
C1-Ti-C14	148.00 (9)		

Symmetry code: (i) 1 - x, -y, -z.

The H atoms on C atoms were refined using a riding model with $U_{\rm iso}$ values equal to 1.5 times those of the preceding C atoms for the methyl groups and 1.3 times for the rings. The C-H distances are 0.97 and 0.96 Å for the CH₂ and CH₃ groups, respectively. The H atoms attached to B atoms were located in a difference map and freely refined.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1989); cell refinement: CAD-4-PC Software; data reduction: CAD-4-PC Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL97 (Sheldrick, 1997); molecular graphics: SHELXTL97; software used to prepare material for publication: SHELXTL97.

This work was supported by Northern Illinois University and by grants from the donors of the Petroleum Research Fund, administered by the American Chemical Society and the National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1105). Services for accessing these data are described at the back of the journal.

References

- Abel, E. W., Stone, F. G. A. & Wilkinson, G. (1995). Editors. Comprehensive Organometallic Chemistry II, Vol. 4. Oxford: Elsevier Science Ltd.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Cardin, D. J., Lappert, M. F. & Raston, C. L. (1986). In *Chemistry of Organo-*Zirconium and -Hafnium Compounds. Chichester: Ellis Horwood.
- Corbin, D. R., Atwood, J. L. & Stucky, G. D. (1986). *Inorg. Chem.* 25, 98–107. Enraf–Nonius (1989). *CAD*-4-PC Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Grimes, R. N. (1995). Comprehensive Organometallic Chemistry II, Vol. 1, edited by E. W. Abel, F. G. A. Stone & G. Wilkinson, ch. 9. Oxford: Elsevier Science Ltd.

Hosmane, N. S. & Maguire, J. A. (1990). Adv. Organomet. Chem. 30, 99-150.

Hosmane, N. S. & Maguire, J. A. (1991). *Electron-Deficient Boron and Carbon Clusters*, edited by G. A. Olah, K. Wade & R. E. Williams, ch. 9. New York: Wiley.

Hosmane, N. S. & Maguire, J. A. (1993). J. Cluster Sci. 4, 297-349.

- Hosmane, N. S., Sexena, A. K., Barreto, R. D., Maguire, J. A., Jia, L., Wang, Y., Oki, A. R., Grover, K. V., Whitten, S. J., Dawson, K., Tolle, M. A., Siriwardane, U., Demissie, T. & Fagner, J. S. (1993). Organometallics, 12, 3001–3014.
- Hosmane, N. S., Wang, Y., Zhang, H., Lu, K.-J., Maguire, J. A., Gray, T. G., Brooks, K. A., Waldhor, E., Kaim, W. & Kremer, R. K. (1997). *Organometallics*, **16**, 1365–1377.
- Jordan, R. F. (1988). J. Chem. Ed. 65, 285-289.
- Jordan, R. F., Bradley, P. K., LaPointe, R. E. & Taylor, D. F. (1990). New J. Chem. 14, 505–511.
- Jungst, R., Sekutowski, D., Davis, J., Luly, M. & Stucky, G. D. (1977). Inorg. Chem. 16, 1645–1655.

- Kahn, O. (1993). In Molecular Magnetism. New York: VCH.
- Koon, P. A. & Helmholdt, R. B. (1984). J. Organomet. Chem. 263, C43-45.
- Kreuder, C., Jordan, R. F. & Zhang, H. (1995). Organometallics, 14, 2993-3001.
- Mabbs, F. E. & Collison, D. (1992). In *Electron Paramagnetic Resonance of d Transition Metal Compounds*. Amsterdam: Elsevier.
- Miller, J. S. & Epstein, A. J. (1994). Angew. Chem. Int. Ed. Engl. 33, 385-415.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pattiasina, J. W., Heeres, H. J., Van Bolhuis, F., Meetsma, A., Teuben, J. H. & Spek, A. L. (1987). Organometallics, 6, 1004–1010.
- Peterson, J. L. & Dahl, L. F. (1975). J. Am. Chem. Soc. 97, 6422-6433.
- Samuel, E., Harrod, J. F., Gourier, D., Dromzee, Y., Robert, F. & Jeannin, Y. (1992). *Inorg. Chem.* **31**, 3252–3259.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Swisher, R. G., Sinn, E. & Grimes, R. N. (1984). Organometallics, 3, 599-605.
- Thomas, C. J., Jia, L., Zhang, H., Siriwardane, U., Maguire, J. A., Wang, Y., Brooks, K. A., Weiss, V. P. & Hosmane, N. S. (1995). Organometallics, 14, 1365–1376.
- VanVleck, H. (1932). In The Theory of Electrical and Magnetic Susceptibilities. London: Oxford University Press.
- Xin, S., Harrod, J. F. & Samuel, E. (1994). J. Am. Chem. Soc. 116, 11562–11563.